AD=A068 S33 GENERAL ELECTRIC CO SUNNYVALE CA COMMAND AND INFORMA==ETC F/6 9/2
SOFTWARE DATA BASELINE ANALYSIS.(U)
MAR 79 D L FISHr M T MATSUMOTO F30602=78=C=0022
UNCLASSIFIED RADC=TR=79=67 NL

BaER | || (][
HEEEECEEEEEEHER
EHREESEERERREM
HRERCEEIEEEREE
EEEQHAEEEMOERE

END
DATE
FILMED
6—79
ooc

|

£638890VE | Ad0) 314 300

- — : T e R

» ooy

UNCLASSIFIED
SECURMTY CLASSIFICATION OF THIS PAGE (When Data Entered)
1 READ INSTRUCTIONS

') REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

@%(nd Sublulo)' e W [T £ 0
- 2 '

Final/Technical Report «
'7/OFTWARE DATA BASELINE ANALYSIS Nanr 14 Nov 77 - 17 Nov 78 »

~4

s
N/A

8. CONTRACT OR GRANT NUMBER(s)

15 y ‘59“5902-78-@01)2-2 }/N'\/

7--AUTHOR(s)
y

M. T./Matsumoto 1%
NAME AND ADDRESS ' 10. ::gﬁl‘.AonRLKE E! TN ROBJECT TASK
“General Electric/Command & Information stems
450 Persian Drive 62702F
Sunnyvale CA 94086 55812005
11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE /
C Mareet®79 | T
Rome Air Development Center (ISIS) /| 13" NUMBER OF PAGES , , . ’ <
Griffiss AFB NY 13441 74 v ~ 7 [
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CL ASS. (of this report) T
o NI : { /
Same 1¢] 5L UNCLASSIFIED
- i 1Sa. DECL ASSIFICATION DOWNGRADIN =
'Y 7 | SCHEDU
L. 7K i N/A SE—

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

L.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) "

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: James V. Cellini (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Software error baselines linear regression structural analysis
software AID analysis
software errors software analysis
software reliability error distributions
software error typology data collection
A ABSTRACT (Continue on reverse side If necessary and identify by block number)

The subject report summarizes the results of an analysis of software error data
supplied by the Information Sciences Division of Rome Air Development Center
(RADC). These data consisted of the software problem histories of five large-
scale software developments, individually collected by the development con-

‘ tractors and supplied to RADC. The problems were classified by a previously
1 developed error typology. The purpose of the analysis was to investigate the O Sea™ { 3
existence of any consistencies in the occurrence of errors utilizing the five — > %
: Al
FORM i of
DD jan 73 1473 UNCLASSIFIED i 3
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 4 :
#
1 B

7L 39015/

——

t
]
]
:
|

e g — T S T T . R el

Congn '

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Pdevelopment efforts. The analysis included consideration of the error
typology, rate of occurrence, time of occurrence, time to fix, and module size.
Results of the analysis isolate methodological problems in the gathering of
software error data and suggest that positive incentives be provided to
development team members involved in the data collection effort.

A

RGeS wnite Section &

NTIS puft gection BD

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE’When Data Entered)

¥
TABLE OF CONTENTS
; LIST OF TLLUSTRATIONS . . ¢ 4o 4 ¢ « o o o & i e 1
: BIST OF TABLES . v i o i i s i s wms AW
Section Page
]-0 INTRODUCTION e« o e & e e O e e o e o o © © © e e o o o o o .]']
1.1 Report Overview Slhei s i e s e e e 3%
V.2 Study PerspectiVve . « « « « o o s« s s o s o s s o o o s Y=l
1.3 Summary of Findings AT i s e VT
2.0 Tﬂg BATA BASE eV PR L S P
2.1 Parameters of the Analysis v v v ¢ v ¢ o « « o 2-1
2.1.1 Software Parameters vk s e e 2
: 2.1.2 Problem Parameters « ¢ ¢ ¢ « o« & o e o 12=5
2.2 The Project Histories YL I R T R
4.1 Project 3 . o .0k wiwie e PR) SR R R SR 2-10
v PO G A QT G et e e 2-11
Caerd SRROIeCH I s Rl e e e e 2-14
vl R T | e SN e e o I S 2-14
2.9 PPOIeCL B . o'n 6 i h e s o ey e ke e # 2-19
2.3 Limitations « « » « o o o5 o & 5 % - e R 2-24
3.0 ANALYSIS OF THE DATA . . . & ¢ v v ¢ o« « o & S e e e 3-1
ol ERrOr Rates) ol o v R S e e e el e e 3-1
3.0.1 Effect of Module S1Ze . . & « ¢« ¢ « s 5 « & & s 3-2
3.1.2 Effect of Module Type . . ¢« ¢ « « » & ¢« & s « a 3-2
Beb:0 EEFEEEOF TR ¢ o/ o v 66 % % v w & & & & & % % 3-6
3.2 Distribution of Problems . « ¢ « ¢« ¢ ¢ o 5 ¢ 5 & 8 5 3-6 !
3o RBBOE I o e Vs e e e e e 3-21 !
i J.3.1 CEffect of Module Type . « « « v & o 5 o & = s 3-21
el EFFCCE OF Error TyP8 . ¢ ¢ « o % ¢ 5% s« & & & & 3-25
' 3.8 Cross Project Validity '« . s « o5 s c v s s v o o & 3 3-25
3
i

2 T

TABLE OF CONTENTS (Continued)

Section
4.0 FUTURE CONSIDERATIONS FOR RELIABILITY DATA
(505 Lo 8 0 T e e o e e Sy e S Sl
e R E RN B S o e R i R e [TRl B e ey
APPENDEN Rt & ol Tl b e Sl e o W I et la) ol ior To i 57 e
ii

AP IGRA e A

Ry

M. 5 YIRONIRY <l

F
Number

>wwwwwww5»wm

igure

.2-1
.2-2

L1-1
.3-1

.3-3
.3-4

JRF R [p—
.
w
1
N

.2-1
.2-2
.2-3
-3.2+1

LIST OF ILLUSTRATIONS

Page
Project 3 Number of Problems as a Function of
Moditle SIZE . s o v s e e s s hw e e s R e 1-9
Project 1 Number of Problems as a Function of
Module Size URARES Rl e b L S KL 1-9
Rationale for Functional Categorization 2-4
Project 3 Total Problems by Month 3-7
Project 2 Total Problems by Month 3-8
Project 1 Total Problems by Month 3-9
Project 5 Total Problems by Month 3-10
Project 4 Total Problems by Month 3-11
Problem Distribution by Project 3-20
Project 3 Distribution of Problems by Module Type 3-22
Project 1 Distribution of Problems by Module Type 3-23
Time~to-Fix by Problem Type 3-26

AID Tree for Software Problems A-2

Table
Number
1.2-1
2.1.1-1
2.1.2-1
2.1.2-2
2.2.1-1
2.2.1-2
.2.2-1
.2.2-2
.2.3-1
.2.3-2
.2.4-1
.2.4-2
.2.5-1
.2.5-2
.3-1
.11
.1.2-1
.1.2-2
.1.3-1
.1.3-1
.1.3-2
.1.3-2
.1.3-3
.1.3-4
.1.3-5
.1.3-5
.3.1-1

[A]

AW W W W W W W W W W wWwwwwwD N NN NN NN
G g

LIST OF TABLES

Page
Uses of Baseline Information. e s R 1-6
Functional Typology of Software Modules 2-3
TRW Typology of Software Problems 2-6
Criticality of Software Problems 2-9
Project 3 Software Modules « ¢ « « « . & 2-12
Project 3 Software Problems e]
Project 2 Software Modules . . i '« o vo s sis o o o s o s s 2-15
Project 2 Software Problems . . « oiw v s s e o o s-s o o 4 2-16
Project 1 SoftwareModules ¢ wie @ o s's 2 s & o '« = 2-17
Project 1 Software Problems 2-18
Project 5 Software Modules« o . o . . 2-20
Project 5 Software Problems« ¢ ¢« o« . . 2-21
Project 4 Software Modules . . - < « o o s s o s = @ 5 5 » 2-22
Project 4 Software Problems cic o o o o o 5 5 s s . 2-23
Contents of Software Problem Data Base 2-25
R UGS e b o 0 o 0 5ol G0 o e G o o 3-3

Project 3 Correlation of Number of Problems with Module Type 3-4
Project 1 Correlation of Number of Problems with Module Type 3-5

Project 3 Month vs. Problem Type « « « « « o ¢ . . 3-12
T T e O I e R i T T e e e e 3-13
Project 2 Month vs. Froblem Type « « . .« « « . « . . 3-14
GanEInted 9 o s e e Bal e e i s e st e A e, e e e e e 3-15
Project 1 Month vs. Problem Type . - . « « « « « « « o « . . 3-16
Project 5 Month vs. Problem Type . « « « « « « « « « « « . . 3-17
Project 4 Month vs. Problem Type 3-18
GOOSIMURY = v s v+ 5 2 b 9 wiEle W = % % & v % ¥ W E N 3-19
Time-to-Fix by Module Type « « ¢« ¢« ¢« ¢« ¢ ¢ o o o o & 3-24
SUDSYEEOI T o b v e b v ow e ke W N N 3-27
SUDSYBEMINZ" ' o s % mis e e v o a s m ke % v e ey 3-28
DUDSYSEEI 3 " . % i b ow v s Ve w8 a e e ks ww A 3-29
Parameters for Data COlleCtion . . v o w « w & « & s & = « 4-2
AID FOPOREEETE . . v & v % o & 4 % %% % & B 4 % % % & ¥ s A-3
GOMG RTINS A o 5w 5 5 s S e 0 e e oy A-4

iv

Evaluation

The need for reducing the cost and increasing the productivity of
software within the Air Force still exists. This task involved various
areas to investigate. It was necessary to surface the results of

particular previous efforts in order to coordinate all the valuable

inforination from them toward these needs. Particularly, this effort
E was undertaken to analyze the results of five software error data

collection projects in an attempt to develop quantitative baselines.

It fits iato the goals of RADC TPO-R5A, Software Cost Reduction; Sub

Thrust osoftware Data Collection and Analysis. The report presents the

results of the analysis of data from different types of 1large DOD

sottware development projects. Tne value of this effort is that it

| will bpe wused to support current model prediction and quality
3 measurement projects as well as be evaluated with the goal of
developing useful baselines. It has been significant in bringing forth
the areas that require in-depth development in order to arrive at
these baselines.

oA
aZ)y:C<iZéi/fz%;;(4‘§>g;éf

JAMES V. CELLINI, Jr
Project Engineer

.
-
i
¢

M e gty

1.0 INTRODUCTION

1.1 REPORT QVERVIEW
This report summarizes the results of an analysis of software error data

supplied by the Information Sciences Division of Rome Air Development Center
(RADC). The analysis was performed for RADC under contract number F30602-78-
C-0022. The software error data consisted of the software problem histories
of five large-scale software developments, which were individually collected
and provided to RADC by five software development contractors, ([THAT76],
[(WILH77], [FRIM771, (BAKW77], [RYEP77])*.

The major objectives of the study were to utilize these software development
problem histories to determine if certain characteristics of the software
exhibit consistent ralationships with the corresponding problem histories and

to determine the validity and applicability of these relationships. In
addition, recommendations for future analysis which would further the establish-
ment of these baselines, were also expected.

The approach taken was as follows:
(1) Establish a set of functional categories into which elements of a
software system could be grouped. The categories presented in
[THAT76 *were used as a starting point.

(2) Utilizing these functional categories , classify the various modules
of each of the software systems provided in the error data base.

(3) Perform statistical analyses to determine if consistent relation-
ships or baselines can be established between characteristics of

the software and measures of its reliability.

(4) Determine the validity of the results by assessing their applic-
ability to error data from other software developments.

This approach is described in more detail in the report and definitions for

*See References following page 4-3.

1-1

~,¢ -

many of the measures of reliability and characteristics of the software are
provided. The constraints impcsed by the data available is also described.

The report is organized as follows: Section 1 provides an overview describing
the objectives of the study, the general approach, the perspective of the study,
and the general findings. Section 2 provides a description of the data avail-
able for analysis. This description includes a brief discussion of the soft-
ware developments from which the data came, as well as the characteristics of
the software and types of error data provided. Section 3 contains a descrip-
tion of the analyses performed and the detailed results. A discussion of the
validity of the results is also provided in this section. Section 4 suggests
what data can be collected in the future to assist in the establishment of
error baselines. Appendix A-1 provides a structural analysis using the AID
(Automatic nteraction Detector) technique to determine if the method could
provide some insight into the effect of certain parameters on the number of
errors which occur.

1.2 STUDY PERSPECTIVE
In the acquisition of a new software system, one of the major problems facing

the acquisition manager is the prediction and assessment of software quality.
Among the many factors which contribute to the measurement of software quality,
reliability is one of the most important [MCCJ771*. Until recently, no tech-
niques were available to quantitatively measure software reliability. Reli-
ability was largely a subjective measure provided by the users of the system
and was not readily comparable to the reliability of other functionally
similar software systems. A direct consequence of this void was often to
delay the realization that a reliability problem existed until it was too late
to achieve any substantial improvement except for the correction of the obvious,
high-priority software problems. The users were often left to contend with
less serious software problems with workaround procedures.

The occurrence of software errors is a primary indication of unreliability;

but, reliability is only one of a number of factors which contribute to the over-
all measure of software quality. To a certain degree, the contribution which
these factors make to software quality is also measured by the number of errors,

*See References following page 4-3.

1-2

T r-l_—-‘
v

indicating that the error characteristics of software are an extremely impor-
tant indicator of the overall quality. However, the effect of errors is most
clearly indicated by the reliability factor and, as a result, it is receiving
considerable attention in RADC's study efforts.

A concerted effort is now being made to develop a concept of software reli-
ability. However, a reorientation in perspective must be made by individuals
familiar with hardware reliability concepts. There are significant differences
which distinguish hardware and software when visualizing the reliability
discipline. At the outset, software does not fail like hardware. A hardware
failure indicates that something has changed states - from a working state to

a nonworking state. Rather, in the software domain, the condition equivalent
to a hardware failure is the occurrence of an error which is analogous to a
hardware design error. For a given set of initial conditions, software will
always accomplish the identical set of operations producing the identical
results each time it is executed. This of course is not necessarily true of
hardware and imparts a different meaning to the basic measure of reliability.
Another important distinction is that in correcting a hardware failure, the g
system is normally restored to its initial configuration, while the correction
of a software error produces a different configuration which will exhibit
different properties.

The concept of software reliability which is used in this study which is
supported by past experience can be simply stated as:

The extent to which a program or collection of functionally related i
programs can be expected to perform its intended function with required

precision.

With this basic definition of software reliability, two fundamental approaches ¢]
to its practical interpretation need to be considered. The simplest of these, '
which is applicable to individual programs and to some extent software systems, |
is a measure characterized by the Mean Time Between Error (MTBE) which is]
analogous to the MTBF measure of hardware reliability. For large software A'i

- e

— b - G g T T S e S W —

T ST e W N8 S TS W e s

systems as are typical of many Air Force applications, the concept of Mission
Reliability has more significance than MTBE, although a definite interre-
lationship exists between them. Mission Reliability is a measure of the
probability that, once started, a stated operational mission can be completed
successfully. An important point here is "completed successfully" and does
not preclude the occurrence of certain types of software errors. This two
level definition of reliability has been taken by others [LLOD77]* but differs
by not requiring reliable software to be fault-free. Mission reliability is
normally more meaningful in tactical and strategic systems where specific
mission objectives must be achieved.

Although detected errors are an indication of software unreliability, a pro-
gram with many known errors can be reliable and conversely one with no known
errors can be extremely unreliable. It must be realized that the reliability
of a program or software system is not only a function ov the number of latent
errors existing in it but also of the way in which it is used. Thus software
reliability is a function of the number of errors, the severity and location
of those errors, and the way in which the system is being used [MYEG76]*.

Attempts to develop a comprehensive theory of software reliability which will
allow accurate prediction of software error characteristics, software avail-
ability, and other similar measures are beginning to show results. An
essential contribution to the furtherance of this theory is the continued
study of software error characteristics such as that described in Section 3
of this report.

The idea of achieving an environment in which reliable software is a normal
occurrence is no longer unrealistic but reliability considerations must play
an important part in the mainstream of the development activity. What is
needed is a reliable method with which a software system can be evaluated at
appropriate stages during its development. In a previous study [THAT76]*

a large set of software error data was collected and analyzed from four

*See References following page 4-3.

1-4

e

I TR T g AR 0N e

separate software development projects. The initial work performed during
that study and other sources of software error data have been used as the basis
for the continued development and refinement of software error prediction
techniques contained in this report.

The ultimate goal in this area is to develop a set of error baselines, in the
form of regression equations, which accurately predict the expected error
behavior of the software segments or modules within a functional category when
estimated or actual values for the characteristics are input. With error base-
lines that have been validated against historical data, it will then be possible
to predict, at the start of a development, the number of errors which would be
typical of a module within a specific functional category. As the development
of the module progresses, estimated characteristics could then be replaced by
actual values to refine the prediction.

This informatior would be valuable in planning the amount of effort required
for testing. It would also allow assessment during the development of how well
the testing effort is progressing. Problem report trends can be compared with
predicted values and a change in emphasis or reallocation of resources might
be enacted. Finally, the error rate expected past delivery will impact the
amount of resources planned during the operations and maintenance phase.

Table 1.2-1 summarizes the use of the error baseline information.

In addition to the error rates, the types of errors expected and expected

time to fix statistics that were derived from our analysis are valuable. If
certain types of errors can be expected from particular types of modules, test
plans and strategies can be generated to emphasize the detection of those
types of errors. Standards and conventions can be established which are
oriented toward the prevention of these particular types of errors. Plans

for software operations and maintenance personnel skill requirements and
training could also be influenced by the types of errors expected.

The time to fix estimates assist in planning the testing effort. It also
provides indications of the response time to errors during operations and
maintenance and therefore overall system availability.

1-5

R e i 7o TR T -‘.—vv—n

]

i

s o

i
:

e i it

Table 1.2-1
Uses of Baseline Information

INFORMATION DEVELOPMENT PHASE OPERATION AND
FROM BASELINE MAINTENANCE
ANALYSIS PLANNING CONTROL PHASE
3
?
- Error Rates o Test Effort | @ Test e Expected Reliability

e Throughness

Required Resources

o Identified
Areas of Emphasis

Distribution e Test Plans e Standards and e Expected Reliability
of Errors and Strategy Conventions
e Personnel Skill Mix
e Training
; Time to Fix o Test Effort e Operations Response *
e Required Resources

System Availability

4‘;"’ e ot T

1-6

S W kNI o

The data and results available from this study and previous efforts do not
yet allow these types of uses of the information to be made with complete
confidence. However, consideration should be given to this type of informa-
tion for planning. i

1.3 SUMMARY OF FINDINGS

The conclusions that can be drawn from this study were severely constrained
by the available data. The impact is discussed in detail in section 2. In
general, the inability to look at the data from different viewpoints, for
example from a different functional categorization, prevented investigations

that might have led to more significant correlations and more confidence in
the results.

Six functional categories were defined for software modules. They are:

(1) Control (4) Algorithm
(2) Input/Output (5) Data Management
(3) Pre/Post Processing (6) System

They are defined in Table 2.1.1-1. This categorization is similar to others
which have been developed and have been used for classification of the mod-
ules in large command and control systems. As far as possible, the modules
for each of the projects were classified according to these categories.

The analysis conducted was aimed at determining if statistical relationships
could be found between certain characteristics of the software and charac-
teristics of the problems reported with that software. The characteristics
of the software, or software parameters, investigated and utilized in the
analysis included module size, function, language, difficulty, and develop-
ment method. The characteristics of the problems reported, or problem param-
eters, investigated and utilized in the analysis included the type of error,
time of occurrence, severity and time required to fix the problem. Also an

analysis of the confidence in the relationships was made.

iR g LS o SN TS S A ¥

Most of the analyses were conducted at the module level. This reflects the
desire to identify characteristics at a module level which could be determined
early in a project and could then be used to predict the problem character-
istics expected. However the most consistent result found was at an aggregate
level. This result was that approximately two problems per hundred lines of
source code occurred in each project.

The consistency of this result was very interesting considering the fact that
the projects represented different applications, different customers,
different contractors, and the problem reports were from relatively different
time periods in the projects' life cycles, i.e., the software had been sub-
mitted to different amounts of testing. This result closely corresponds to
error rates reported elsewhere [NELR78]%

One possible reason for the consistency at the aggregate level, is a phenomenon
found in the analysis of programmer productivity. Programmer productivity
figures are derived at an aggregate level because of the observed wide
aifferences in programmers' abilities and because of the wide differences in
the difficulty of implementing software modules. These same factors, pro-
grammers' ability and difficulty of the implementation, also have a signifi-
cant impact on the reliability of a module. Thus at a module level these
factors may have a greater impact on the error rate than functional categories
and are only observed at an aggregate level.

At the module level, the analysis revealed differences in error rates for the
different functional categories. These error rates are the baselines. Thus
the number of lines of source in a module can be used to predict the expected
number of problems that a particular module will have. Figures 1.2-1 and
1.2-2 qive the regression lines for Project 1 and Project 3. The modules
have been classified according to their function. Statistically, only a sub-
set of these baselines exhibit a significant degree of confidence. The de-
tails of the analysis are in Section 3. However at this level, general obser-
vations can be made about baselines. For example, based on Project 3 the data
| management category baseline (error rate) is approximately twice that of all
other categories.

PE ot R TSN

v, it e Prse

*See References following page 4-3. | 4

o
: 1 $ b 4 : S T e b e T
k I m‘ i« ” T T AT a3 BN LAy 4 A e " R T, (T

e

Number of Problems

w
1<)
|

n
o
|

Data Man-
~agemen-t

Control

Undetarminec

Figure 1.2-1

Number of Problems

1 T

300 1000
Lines ¢t Sourcs

Number of Problems as a Function of Module Size for Project 3

a0

30 Pre/?ast
°rocassing
Lndetarminec
centroi
Algoritnm

20 — ~ — A1l Moduizs

/ = I/
-
/
/ =
-
/ -
o -
19 Z.
-
/
-
-
-
T T
5CC R 1000
Lines o7 Sourza

Figure 1.2-2

Number of Problems as a Function of Module Size for Project

T R T T T aan e i TT—— “

The error distributions were less consistent than the problem rates. Five
categories of problems types accounted for over 40% of the problems in each
project. These problem types were computational, logic, input/output, data
handling and user requested changes. In four of the projects the most preva-
lent type of problem was in logic. In the other project the logic problems
were exceeded by user requested changes. In the categories other than the
five mentioned, the distribution varied between the projects. The variations
can be accounted for by differences in the methods or in the interpretation
of the categories used to classify the problems.

The profile of problem types for a particular type of module is not completely
coensistent across the various projects. The distribution of problems for a
module is better indicated by the project than by the functional type of the

module. This again is probably caused by the different ways the problems were
classified.

e TN~

2 g

T et

2.0 THE DATA BASE
This section describes the data available to the study effort. In paragraph
2.1 the parameters considered in the analysis are described including the

characteristics of the software, software parameters, and the characteristics

of the problem reports, problem parameters. In paragraph 2.2, the five
software projects and the associated data about those projects are described

In paragraph 2.3 the limitations imposed on the study by the data are discussed.

2.1 PARAMETERS OF THE ANALYSIS

A basic premise of this study is that the reliability of a software module

can be predicted from intrinsic properties of the module. Thus by identifying
certain properties of software, its reliability can be predicted. Some of the
measures that have been suggested as predictors of software reliability are
implementation language, module size, module function, module difficulty and
certain structural measures such as number of branches, depth of nesting and
number of operators and operands. Software reliability can be indicated by the

number and type of problems, their time of occurrence, their difficulty to
repair and their criticality. These parameters will be discussed in more
detail in the following paragraphs.

2.1.1 SOFTWARE PARAMETERS

The selection of the proper unit of software for analysis is not immediately
clear. An entire software development, which in a major project might exceed
100,000 1ines of code, seems to be too coarse a unit. In practice certain
subsections of a development are more error prone than others and the identifi-
cation of these subsections, or segments, is one of the goals of the research
in reliability theory. The approach taken in this study is to use thc
smallest meaningful unit of source text for the language processor used during
the development. This unit of source will be called a software module. It is
useful to use this as a basic component since an individual programmer would
normally code and test these subsections.

The language in which a module is coded presents little difficulty in interpre-
tation or identification. It might be FORTRAN, COBOL, JOVIAL or one of the
other high level languages or an assembly language for a particular processor.

-

A minor problem that does occur is that some high level languages such as
JOVIAL allow an intermix of assembly level instruction. The method used in
the following report to specify these intermixed modules is to place them in
a special category.

The function of a software module can be described by using a modification
of the classification given in [WOLR74]*. This classification is shown in
Table 2.1.1-1. The basic reasoning behind this particular classification is
that the function of a module is determined by the module's effect on pro-
gram and information flow within the system. This idea is expressed in Fig-
ure 2.1.1-1 where each type of module is characterized.

This classification is different than the one used to classify the modules
in the five software projects [THAT76]*. A mapping was established to allow
translation to this classification. This mapping was as follows:

[THAT76]* Software Data Baseline Study
Control Control
Input, Output Input/Output
Primarily Computational Algorithmic
Setup, Post Processing Pre/Post-Processing

Other classifications may have proven to be more useful or provided a better
statistical base for the baselines, however no means for reclassification
except for a direct mapping as shown above was possible.

The difficulty of a module is a somewhat subjective matter. A categorization
given by Wolverton [WOLR74]* describes the difficulty of a module as the
number of interactions it has with system elements. An easy program is one
with very few interactions with system elements, these include most applica-
tions programs. Medium difficult programs are programs that have some inter-
action with system elements. Examples are compilers, I/0 packages and
utilities. Hard programs are programs with many interactions with system
elements such as operating systems. Certainly other factors contribute to

%ee References following page 4-3.

2-2

- ‘,.,.:‘/E' B i

i -

TR TEEG

Table 2.1.1-1 Functional Typology of Software Modules

CONTROL
AN EXECUTIVE MODULE WHOSE PRIME FUNCTION IS TO INVOKE OTHER MODULES

INPUT/OUTPUT
A MODULE WHOSE PRIME FUNCTION IS TO COMMUNICATE DATA BETWEEN THE COMPUTER
AND THE USER

PRE/POSTPROCESSOR
A MODULE WHOSE PRIME FUNCTION IS TO PREPARE DATA FOR THE INVOCATION OF
A COMPUTATIONAL MODULE OR AFTER THE INVOCATION OF A COMPUTATIONAL MODULE

ALGORITHM
A MODULE WHOSE PRIME FUNCTION IS COMPUTATION

DATA MANAGEMENT
A MODULE WHOSE PRIME FUNCTION IS TO CONTROL THE FLOW OF DATA WITHIN THE
COMPUTER

SYSTEM
A MODULE WHOSE FUNCTION IS THE SCHEDULING OF SYSTEM RESOURCES FOR OTHER
MODULES

[< o5 i s
v
CPU STORAGE
T
CONTROL "
h /® > CORE
I/0
USER —>
SYS tDM
ARITHMETIC
UNIT MASS
u STORAGE
AL
LEGEND IDENTIFIER
CONTROL co
INPUT/OUTPUT I/0
SYSTEM SYS
ALGORITHM AL
-PRE/POST PROCESSOR P/P
DATA MANAGEMENT DM
b Figure 2.1.1-1 Rationale for Functional Categorization

the complexity or difficulty of the module.

Recently a number of structural measures have been proposed as predictors

of software reliability [MCCJ77]% These measures include the complexity of
logic flow, depth of interactive nesting, number of "GOTO's", etc. These
measures were not applied since they were not available in the software error
data base but certainly should be considered in future efforts.

2.1.2 PROBLEM PARAMETERS

In the analysis performed, the number of problems a software module has is used
as the measure of software reliability. The more problems the lower the reli-
ability. So the definition of what is a software problem determines what is
meant by software reliability. Each of the projects had a formal method for
recording software problem reports and these form the basis for the succeeding
analysis.

The period of collection varies between the projects. Ideally software pro-
blems would be collected during the entire development and in operation. This
was not the case but sufficient data was collected to indicate the reliability
of various software modules in almost all cases. Had the periods of collection
been relatively more consistent, the analyses across projects would have been
more significant.

The errors have been classified according to the typology developed in
[THAT76]. The classifications are given in Table 2.1.2-1. The typology was
used by each of the five contractors to classify their respective software
problem reports. Since the typology reflected the type of project from which
the typology was developed each of the other contractors had varying success
with its use. Their major objections were that there were no standards or
criteria for categorization and that the typology was somewhat specific to
the command and control system used for the development of the typology.

*See References following page 4-3.

FAYMAYVH

SNOILS3ND

d401v43d0

(3T4I1IN3AINN

JONVITWOD LIN3IWIHINDIY
NOILY1IN3IWNI0d

SY0YY3 INIFYUNIIY
NOILINI43Q 378VIYVA V4019
SY0¥Y3 V.iva 13S3dd

S3IONVHO @3LSINDIY ¥3sn

JOV4Y3LINI 3SvE vivd
JOVAYIINT ¥3sSN
INISS3II0dd 3dvl
JOVAYIINI WILSAS/INILNOY
JOVAYIINT INILNOY/INILNOY
NOIL1YdNIIANOD

140ddNS W3LSAS/SO
ONITANVH Y1va
1Nd1Nn0/LNdNI

J1901

TYNOILVYLNdWOI

SWaLqodd 94eM140S 40 ABOLOdAL MYL [-2°L°Z aLqel

-t
TR e

Typical of the four projects that had to use the typology are the following
comments:

Many of the categories were self-explanatory, while many others were
subject to interpretation. The task of interpretation would have been
much easier had a description of the categories been documented. Such
documentation, possibly a brief one sentence description of each sub-
category, would have made the job of the analyst easier.

It would help assure uniform application among different analysts.
Categories which seem obvious to the person who developed them on the
basis of observed errors are often obscure to the person using them.
In fact, it would seem that documentation, although sometimes appar-
ently superfluous, is a necessary part of the task of developing a
tool to be used outside the domain of the developers. [FRIM77]*.

Another difficulty with the typology is that there is no differentiation
between causative and symptomatic problems. A problem can be classified by
either the way a problem exhibited itself or the actual cause of the problem.
An example of this type of problem is a program that does not check for the
end of tape marks. The problem can either be reported as a tape processing
problem (I) or a logic problem (B). Another example is a routine call to
another routine passing it an out-of-range parameter. The called routine {
performs an incorrect calculation as a result. Is the error in the calling
string of the first routine, a lack of input checking in the called routine,
or a computational error in the called routine? This problem also manifested
itself in the categories of user requested changes and recurring problems.
Neither of these categories describe the cause of the problem if there is
one.

The seriousness of a software problem is a major concern of software mainte-

nance. The goal is to have a few problems and for these problems to be not

very serious. The seriousness of a software problem can be viewed in two i
ways. One is the criticality of the software, how immediate is a repair ﬁ
required, while the other is the difficulty of the repair. y

*See References following page 4-3.

e Loaes o g abho ol gt ol bt i L Sl e 4o

G

The criticality of a software problem can be rated on a four level scale. A
critical problem is a problem whose correction is required for the immediate
function of the software. A medium serious problem is a problem whose
correction is necessary for future function of the software. A problem with
low criticality is a problem whose correction is required for functioning of
the software as designed, but not for immediate use. An improvement is an
enhancement in the function of the software. These problem ratings are shown
in Table 2.1.2-2.

The difficulty of a correction to a software problem can be determined by the
amount of resources required to correct the problem. The required resources
can be measured by the number of manhours required to correct the problem.
This is probably the best indicator of the expended resources but requires
very careful bookkeeping. The quantity used in this report is the length of
time between the formal recording of the problem and the recording of the
correction to the problem. While this quantity may not truly reflect the
difficulty it is obviously related to the amount of effort devoted to the
correction of the problem. However with problems of equal criticality,

(i.e., problems given equal priority to fix) there should be a direct relation-
ship between the number of days a problem report is open and the difficulty of
corrections.

2.2 THE PROJECT HISTORIES

The histories of the projects which comprise the data bases for this study

will prove useful later in this report in understanding some of the problems
relating to the development of error baselines. These data bases are part of
the software data repository currently being created by RADC. Such a repos-
itory, together with a more fully developed software system and error taxonomies,
should prove a valuable tool for the study of the software development process
and 1ife cycle concepts currently being investigated by the research

community.

The succeeding paragraphs provide summaries of the histories of the projects
involved in this study. More complete histories may be found in [THAT76]*,

*See References following page 4-3.

R A IR G

T T T

Table 2.1.2-2 Criticality of Software Problems

CRITICAL - CORRECTION NECESSARY FOR IMMEDIATE FUNCTION OF SOFTWARE

MEDIUM - CORRECTION NECESSARY FOR FUTURE FUNCTION OF SOFTWARE

LOW - CORRECTION REQUIRED FOR FUNCTIONING OF SOFTWARE AS DESIGNED,
BUT NOT FOR IMMEDIATE USE

IMPROVEMENT - A CHANGE IN THE FUNCTION OF THE SOFTWARE

b SRR R S

i IR ST AL

s B IR RIS v ¢

!
8
i

[FRIM77], [BAKW77], [RYEP77], [WILH77]% For contractual reasons, full
explanations of the operational and functional characteristics of some of the
projects are not provided in the literature.

2.2.1 PROJECT 3

This project is a real-time control system for a land-based radar complex.
The system entailed both hardware and software developed by the Project 3
contractor. The development methodology was modular, using JOVIAL/J3 as the
primary programming language. However, the executive program, as well as
some other modules and subroutines, were written in assembly language.

The hardware configuration consists of a dual processor system, both pro-
cessors being identical. In operation one processor acts as the Central Pro-
cessing Unit (CPU), and the other as the Input/Output Control Unit (IOCU).
Both processors share common access to the 81,920 common memory locations.
Each memory location consists of a 24 bit word. No special reconfiguration
is needed for either processor to do the work of the other, i.e., the CPU can
become the IOCU and the IOCU can become the CPU without any difficulties.

It is interesting to note that this project made use of seven software develop-
ment tools. These included the following:

(1) Cross Compiler

(2) Compiler Support Software

(3) Cross Assembler

(4) Digital Simulator of the Object Computer

(5) Operating System with Debug Package

(6) Digital System Simulator

(7) Data Collection/Reduction Software

Actual development of the software took place on a dedicated UNIVAC 1108 host
system and item (4) above, the Digital Simulator, acted as the test simulator
of the project computer.

*See References following page 4-3.

ﬁ.'ov“‘

R e SRt TR

-Mm.. B e S

The software system consisted of the Executive, made up of five primary
functional units - a Task Manager, Memory Manager, I/0 Manager, System
Auditing Function and Centralized Error Processor - and 109 application
modules. A total of 136,707 lines of code were involved in the development.

Software problem reports were collected during unit testing integration and
operational testing in the field. Each of these reports was classified by a
programmer who had worked on the project according to the problem typology
developed by TRW. This classification was done after the project was completed
at the request of RADC. There were 2,165 problem reports collected over a
period of 37 months.

The modules which comprised this system were categorized using the functional
categories defined in Section 2.1 (as far as possible). Twenty-three modules
contained no information about their function and were placed in the unde-
termined category. These modules accounted for over half the total lines of
source code for this project (Table 2.2.1-1).

Each software problem was assigned to a particular module and were included in
the subsequent analysis (Table 2,2.1-2).

2.2.2 PROJECT 2

Project 2 consists of an avionics control system comprising five subsystems,
a control and displays subsystem, a hardware test monitor, two unspecified
system functions (A and B) and an executive function which schedules the
other subsystem functions. Two other computers provided system and subsys-
tem simulators during the project to provide a test bed environment. The
software was written in JOVIAL/J3B and assembly. There were approximately
80,000 lines of assembly and 40,000 lines of JOVIAL code. The system was
composed of 69 modules.

Software problem reports were collected during module verification, inter-
module compatibility testing and systems validation. These reports were
classified according to the TRW error typology after the project was completed
at the request of RADC. There were 2,036 problem reports collected during a
period of 28 months (see Table 2.2.2-1).

e T

Table 2.2.1-1

Project 3 Software Modules

NUMBER OF MODULES
LINES OF CODE

- 109
136,707

FUNCTION

NUMBER
OF MODULES

LINES
OF CODE

NUMBER
OF ERRORS

co
10
PP
AL
DM
UNDETERMINED

15

6
22
21
22
23

16,580
2,969
6,102

10,045

24,691

76,320

427
108
208
406
826
189

Table 2.2.1-2 Project 3 Software Problems

NUMBER OF PROBLEM REPORTS 2,165

COLLECTION PERIOD
12/72 - 1/76

PHASES DURING COLLECTION

INTEGRATION, ACCEPTANCE, AND OPERATION

CATEGORY NUMBER CATEGORY NUMBER
A 115 L 764
B 382 M 162
C 21 N 45
D 409 P 39
E 4 Q 15
F 18 R 10
G 16 S 77
H 17 T 15
I 0 u 3
J 10) 1
K 32

Insufficient information was available to categorize the modules of this pro-
ject. Analyses that required knowledge of module function could not be per-
formed on this data set (Table 2.2.2-1).

Not every problem could be assigned to a particular module. Only the 1,443
problems which could be ascribed to particular modules were subjected to de-
tailed analysis (Table 2.2.2-2).

2.2.3 PROJECT 1

This project was a large command and control system. The software was written
in JOVIAL/J4. The system was composed of 249 modules, of which 77 were writ-
ten by an associate contractor. There were 115,346 lines of source statements
and 80,993 comment lines.

Software problem reports were collected during development test, validation
test, acceptance test, integration test and operational demonstration. The
project was used by the Project 1 contractor to develop the problem typology.
There were a total of 4,519 problem reports (Table 2.3-1, page 2-25) collected
over a nine month period.

Only 145 of the modules could be classified as to function. The 77 modules
written by the associate contractor had no information about their function
and 27 of the Project 1 modules were classified as utility modules (Table
2.2.3-1). Of the 4,490 software problem reports only 4,087 could be ascribed
to particular software modules. The other problems either related to data
base changes or nonexistant modules (Table 2.2.3-2).

2.2.4 PROJECT 5

This project was the command and control software for the anti-ballistic mis-
sile system. The software was written in CENTRAN. The system was composed
of 2,413 modules (Table 2.2.4-1). There were 130,592 lines of source code.

{ The functions which these modules performed included radar surveillance,
o tracking, target classification, radar management and testing, inter-site com-

munication and command and control display functions. The application required
both high reliability and availability, as well as fault-tolerant software.

S— T e
e

Table 2.2.2-1 Project 2 Software Modules

NUMBER OF MODULES 69
LINES OF CODE 124,705
NUMBER LINES NUMBER
OF MODULES OF CODE OF_ERRORS
| 69 124,705 2,036 ;

S e

o

T TR TP TR T T T W T

Table 2.2.2-2 Project 2 Software Problems

NUMBER OF PROBLEM REPORTS

COLLECTION PERIOD

5/73 - 8/75

1,443 (2,036)*

PHASES DURING COLLECTION

DEVELOPMENT AND OPERATION

CATEGORY

A

R G~ T O ™M MmO O @

NUMBER
105 (109)
569 (634)
22 (28)
244 (272)
5 (8)
10 (12)
36 (41)
2 i3)
3 (5)
10 (12)
14 (17)

CATEGORY
L

X < C -4 nn O v ==X

NUMBER
119 (161)
53 (67)
27 (46)
47 (148)
7 (27)
121 (144)
23 (30)
20 (159)
1 (19)
3 (32)
2 (62)

* Numbers in () are total problems including problems that could

not be attributed to some software module.

It e N R O

Table 2.2.3-1

Project 1 Software Modules

NUMBER OF MODULES
LINES OF CODE

249

115,346 (196,339)*

NUMBER LINES NUMBER

FUNCTION OF MODULES OF CODE OF ERRORS
co 30 7,203 527
I0 32 18,716 461
#¥ 18 10,664 365
AL 65 37,262 1,067
UNDETERMINED 104 41,531 1,667

* With Ccmments

o SRR

.p"..

A A e RS A B e

Project 1 Software Problems
Table 2.2.3-2

NUMBER OF PROBLEM REPORTS

COLLECTION PERIOD

6/73 - 2/74

4,087 (4,490)*

PHASES DURING COLLECTION

DEVELOPMENT AND OPERATION

CATEGORY
A

A GO = T O M Mo O @

NUMBER
335 (342)
914 (960)
701 (727)
584 (605)

1 (1)

83 (83)
244 (248)

30 (30)

6 (8)
377 (385)
20 (22)

CATEGORY

L

< C 4 »n X®W®O VvV ==

NUMBER
0 (0)
262 (501)
37 (55)
76 (78)
177 (187)
26 (26)
21 (21)
117 (134)
76 (77)
0 (0)

*Total problems are given (), including problems that could not be attributed

to some software module.

g T TR g
BE RS o

T T T T VR R TP Y T

Software problem reports were collected during unit testing, process and
function testing, and system integration. More than 17,000 problem reports
were generated, but only the approximately 6,700 that occurred between

1 March 1974 and 1 March 1975 were in the data base provided by RADC. These
reports were classified into the TRW typology using a semi-automated method.

There was no information available about the function of particular modules.
Only the subsystem to which a module belonged was available in this data set.
Another problem was that these modules did not have unique names so problem
reports could not be ascribed to a particular module. This problem was caused
by the use of slightly modified software modules at different sites. This
problem proscribed the use of this data set in most of the subsequent analysis.
Tables 2.2.4-1 and 2.2.4-2 provide the data that was available.

2.2.5 PROJECT 4

This project was the on-board guidance, navigation, and control software used
for both the command and lunar module of the Apollo space vehicles. The
project was written in assembly except for some interpretive code used for
mathematical programming. The system was composed of 22 subsystems but the
total number of lines of code can only be estimated as between 83,866 and
610,000 (Table 2.2.5-1). The estimate depends on how much code was reused for
each Apollo mission.

This system was developed for the special, single purpose computer used during
the Apollo missions for flight guidance and control. The programs were hard-
wired into the guidance computer and necessitated core memory conservation
techniques which might be considered poor practice in other less weight-
conscious environments. The resulting programs were difficult to debug,
modify or correct.

Software problem reports were collected during the entire operational period
of the Apollo missions. During this time 11,728 problem reports were collected
(Table 2.2.5-2). These reports were classified by using a preliminary version
of the software problem typology developed in [THAT76]*. The two typologies

*See References following page 4-3.

B

i s o r—

Table 2.2.4-1 Project 5 Software Modules

NUMBER OF MODULES

LINES OF CODE

FUNCTION

2,413

130,592

UNAVAILABLE

Table 2.2.4-2 Project 5 Software Problems

NUMBER OF PROBLEM REPORTS 5,693
COLLECTION PERIOD
3/74 - 2/75
PHASES DURING COLLECTION
F DEVELOPMENT
CATEGORY NUMBER CATEGORY NUMBER
A 170 L 188
! B 993 M 310
c 454 N 112
D 347 p 820
g 14 Q 796
F 19 R 32
, G 123 s 236
H 38 T 26
I 5 U 102
J 29 v 246
g K 176 W 457

o
- . “ ':
: 2-21 | &
] {2
L — ’ - . SRR

Table 2.2.5-1 Project 4 Software Modules

NUMBER OF MODULES 22

LINES OF CODE 83,866 - 610,000**

FUNCTION

*ONLY SUBSYSTEM DESCRIPTION AVAILABLE

**RANGE OF ESTIMATES FOR TOTAL LINES OF CODE

e
4 %, e s

SE .,
J“. - et

Table 2.2.5-2

Project 4 Software Problems

NUMBER OF PROBLEM REPORTS 11,728
COLLECTION PERIOD
2/67 - 2/71
PHASES DURING COLLECTION
DEVLOPMENT AND OPERATION
CATEGORY NUMBER CATEGORY NUMBER
A 541 L 780
B 2,217 M 355
c 287 N 851
D 745 P 280
£ 14 Q 127
F | % s R 57
G 760 b 66
H 683 T 0
I 0 u 0
J 42) 2,123
K 79

2-23

AR T0 L J oL

= > T =
B I IR ST S =

are the same as far as major categories are concerned, which were all that
were used in this report. The distribution of problems is given in Table
2.2.5-2.

2.3 LIMITATIONS

There were several shortcomings in the software project data base which
limited the types of analyses that could be performed. Table 2.3-1 provides
a cross project comparison of the data provided.

As already mentioned none of the data bases contained any true structural
information about the software modules. The data bases contained at most
simple descriptions of the modules.

Only the Project 3 and Project 1 software modules could be categorized by
function. In addition only about half the modules in these two cases could
be categorized bacause of insufficient information.

In several of the projects the software problem reports either could not be
ascribed to a particular module or were ascribed to a nonexistant module.

These problem reports were eliminated from most of the subsequent analyses.

On the whole the analysis was more driven by what information was available
than what analysis should be done.

2-24

Contents of Software Problem Data Base

Tabie 2.3-1

d INIWAOTIAZO 40 3SVHD || = = = = =
| ALITVILLIND || =
N3d0 SAva > <
03507 3Lva R R
N340 31va > > > >
3003 ¥0¥¥3 > X< x >x x
@312344Y 3NAOW > > > x
K4
[~ (=) (Ve) v (2e] (- o]
(7] p— o™ (Vo) N N
w M=o e e
(=] < N N (Vo) o
‘ p—
Yivad IvdnLonyls > >
NOILINNA > =
ALIX31dW0D b
NOILONYLSNOD 40 300W ||~ .
39VNINY 1 i
3ZIS > > > »x >
2
z "
E o o o ™ ~
e & T2 s X
(= -
- N
—
e
o | o N ™ (Ve) <
(=]
&
[~
2-25
P e LT NS e e AN . BTV

*SUBSYSTEMS

3.0 ANALYSIS OF THE DATA
The analysis of the data bases provided aims primarily at the prediction of
reliability based on empirical data using statistical methods. The approach
is phenomenological, relating parameters of software, for example the
functional typology given in Table 2.1.1-1, with the observed data.

3.1 ERROR RATES

Predicting the number of problems which may be incurred with a particular
software module is an important aspect of reliability theory. This importance
is reflected in the life cycle concept, which can be considered temporarily

to be divided into two phases, the development phase and the operations and
maintenance (0&M) phase.

The software management has two main tasks, control and planning. Within the
development phase of a project the prior knowledge of 1ikely error rates allows
the manager to schedule test resources in the most efficient manner, and to
provide the most thorough testing to the software modules most likely to
develop problems. Thus planning and control in development are facilitated.
Similarly, during the 0&M phase of the life cycle, the allocation of resources
to problem areas can be simplified by the likely error rates to be incurred
during this period.

The measurement of error rates for this study was by three parameters relating
to modules:

e by size of module

e by function

e over time in the life cycle

Overall problem rates are found in Table 3.1.1-1. The results agree well with
an error rate of 2 per hundred lines of code given in [NELR78]*, based on a
much larger sample.

*See References following page 4-3.

e

3.1.1 EFFECT OF MODULE SIZE

The size of software modules is commonly thought to be related to a number of
software problems. The general feeling is that if a module is twice as long
as a similar module it should have on the average at lease twice the number
of problems. This hypothesis is not totally supported by the analysis. In
the projects shown in Table 3.1.1-1, the correlations in general are low, and
do not give us much confidence in stating a casual connection between module
size and number of problems, assuming an average module size.

This fact seems to contradict the statement that two problems per hundred
lines of code appears to be an empirically valid measure of error rates. And
indeed the statement is counterintuitive. If one increases the module size
by 100 lines of code, we would expect two more errors to appear. But this
ignores the fact that the two error figure is derived on a gross system-level,
and that errors can appear between modules, not simply within them.

For this reason an additional analysis was made on the effect of module func-
tion by size and problem.

3.1.2 EFFECT OF MODULE TYPE

Modules with different functions might be expected to have different problem
rates. The results given in Table 3.1.2-1 show that the error rates for
Project 3 do not vary significantly except for the category "undetermined".

Tables 3.1.2-1 and 3.1.2-2 show partial categorizations of modules in Project
1 and Project 3. Note that the aggregate totals indicate error rates in the
large as being approximately 1.6 per hundred lines in Project 3 and 3.5 per
hundred in Project 1 (Table 3.1.1-1). The module categorization for Project
1 is more complete than that of Project 3. It would seem therefore that the
combination of incomplete categorization along with arbitrariness in assign-
ing errors when these occur between modules cause wide variances in the by
module type error rates. The aggregated results, based on the project level,
smooth over these inadequacies in data and categorization.

3-2

v

SR g, P T S 0

"

-

3009 40 SINIT TW10L ¥O4 SILYWILSI 40 FONVY x»
SINIWWOD HLIM »

> 9L° - pL°L »x 000°019 - 000°€8 22 b
58" 1 265°0€L 1p°2 g
« (172) »(6€€°961)

¢ 9vE“SLL 642 L

9°1 S0L‘v2L 69 2

91 LOL°9EL 601 €

SINIT 00L/S,YdS SINIT S3NAOW 193004d
sajey walqod L-1"L'€E lqeL

Wit

3-3

Table 3.1.2-1
Project 3 Correlation of Number of Problems with Module Type

Module Function Slope Intercept Correlation
Control 0.0202 6.08 0.732
I/0 0.00989 3.1 0.537
Pre/Post Processing 0.00944 6.83 0.195
Algorithm 0.0114 13.82 0.233
Data Management 0.0058 28.24 0.135
Undetermined 0.00055 6.40 0.228

Table 3.1.2-2
Project 1 Correlation of Number of Problems with Module Type

Module Function Slope Intercept Correlation
Control 0.00726 14.67 0.170
1/0 0.014 131 0.757
Pre/Post Processing 0.0225 -0.469 0.723
Algorithm 0.0178 -0.4929 0.777 i
Data Management - = =
Undetermined 0.0223 -0.0604 0.707

S e bl AR e T .

3-5 ~ 2

! v IR . e v i " po

3.1.3 EFFECT OF TIME

The number of problems recorded for each month of the collection periods is
given in Figures 3.1.3-1 through 3.1.3-5. As can be seen the number of errors
ultimately declines withk time but is not a monotonic function. There is an
initial increase in the number of problem reports followed by considerable
fluctuation during the general decrease in error reports.

These fluctuations may be attributed to two main factors, one which concerns

g the type of data collected, the other statistical. In general, testing does

| not begin simultaneously for all software modules. This would account for the
initial period during which there is an increase in the number of errors,
after which there is a decline in errors. The graphic regularities we see in
Figures 3.1.3-1 through 3.1.3-5 tend to support the hypothesis that error data
should be classified in time within specific 1ife cycle phase.

The second point that should be made is that the apparent variances in the
graphs are to be expected in any discrete measurement process. It is not
possible to continuously find errors.

A further breakdown of the previous graphs is given in Tables 3.1.3-1, -2,
-3, -4, -5. Here the type of problem that occurred each month is given. As
can be seen there does not seem to be any major differences between the time
of occurrence of various types of problems.

3.2 DISTRIBUTION OF PROBLEMS

Although the problem report rates for each of the projects is remarkably

? similar, there are considerable differences between the projects

f in the way the problems are distributed in the problem typology (Figure 3.2-1).
The most obvious difference is the high peak of type L (user requested
changes) problems for Project 3. This reflects the nature of this devel-
opment as a demonstration project rather than an operational system.

P T T T

L
;¥7~1 Another major difference is the number of type V (hardware problems) in Pro-
f ject 5 and Project 4. These reflect the special hardware for these projects.

e T LT oy Yo} A g Pt

L-€°L°€ 3unbLy
yjuoy Aq swa|qoad (eiol
€ 1230044
HLINOW vivis
1) o€ G2 0¢ gl (1]} S
-——’-_-——-——--—--.—P-b-\—--m—L—-
-
= ~
s

— 0§

[E =
=

v =
oo

= m
=

— 00l o
-

B -

by -
(=]
@

- =

s 3

— 061

-

— 007

2-£°1°€ 34nb1L
Yjuow Aq sud|qouq |e30)

| 2 123004d
“ HLNOW
1 ¢ 0¢ 52 02 Sl oL ﬂ
M _P._b._d_____q_r_._____.Jq_____. _r_"l,
| — 05
| - — 001
] |

SW37804d 40 ¥3awnN

3-8

- Frpo o ¥ Tmn..‘ 2
» €-£°L°€ a4nbL4
yjuoy Aq swd|qoud [e3of
L 133royd
)LNOW
.m oLviLL
&. 1 | 1 1 1 1 1
— 009
=
c
=
m
-
— 000l o
=
O
, 3
] x®
! =
m
=
w
— 00S1
— 0002

L S — N——

v

- ——

azeril

p-£°L°€ aunbLy

YIuo Aq swa|qodd [e3o)
§ 123004d

HLNOW

— 001

— 00¢

— 00¢

— 00%

— 00§

— 009

00L

— 006

- 000l

SW37904d 40 Y3IGWNN

."y’m
e

3-10

-

G-€°L°E 34nbL4
yucy Aq swalqoud (eiol
¥ 1330044
alres HLNOW

- 00l
- 002
- 00¢
ooy

—~ 005

~ 00

SW37804d 40 y¥3gWnN

3-1

R e R i 1P B 8 o L G o P ———
W T
: e AP A AR I P PP 5 S T Sty e - .

S

!
I
|
|

R Tl R I - v S R R R R - - g
— — —
= > -
SN =SSl =T E L INATRI S SIS =A™ —-S
- mlewemmMN]=-ntMNoTETRETNTNTNN ——— — -
- ~
scﬂ—=occvﬁo-—=-ﬂ--c‘ccnccccﬂcsccecce——g
4
OPSSOOSO=0SOO~~=2SSS—N—=2SSSECSOSSSSeeO /2

— - wn G W E— e . - - - - = . - w— - " S W - - - - - - = - |

DOOTTSTITSSTSTDODODTOOIOSOSTSITOPOTSSSSOOSRDS (@

e D m OO = OO === OIS NSO ===00SCO2OCSS

17

o= - e W o T - n = R G . En - e . . . - w— W wn En e e - |

SINS SR =S =3 S =0 =C = SN=SCOSSSOSSSCeSeSOoSeS ¥

0
0
1
(

\
|
|
|
|
|
|

Project 3 Month vs. Problem Type
T}

S =¥COC =N == =NSN=SSSNSSSSOCSSSSSSsSSS |2
e
—
P e T i i
!o “e s . IEEER ..
. S0CcececOoS~Cs~S=~0cS~SCCsscSccecesesesssle
—
. =
(3]
m — . ——— . ———— . —————————————————————————————— ——— —
=
< R R T R g ST O3-S SR R T SRR X T
— - o e wn wm A e Al o AJA] A - ——— < 3
a <+ 3
3
SOCSNASSSO -~ ~UOSN =0 =3 =B ===SSSSS-SS5353 =
<
i e o s e | }
CENMONNOONS =M FAC O EIN T =SS oM =F SO =2SO=C =N 3 1
a = - — - Q] - - —— - - O] - - -— - ; 3 =
2 23
¥ -
g CmmE NS =SSN R =t =N RNt =S =S N =NNSCS Tt =2
< o—

- 13
0’ -
PGEARS Wiy,

1972
1973
1974
1975
1976

p.—
<

- |
=]

[

i e

R RN =NON O TRNSO =R dTAINSI=COS O 8 b
;3Ravehovaeeaoheaﬂaeéa-o-veﬂagaggze'esbz2
° e - - - - N
(=
- D ED D D ED W UG D S G G GG E D GGG D G Gh S El O ED G S eeeas e e o ws | ™
POO0COOIO = =0 NOOS==N==200P=0O0CSSCOOPO2050|~
>
g - B N S PSS e ————
2 PO 0000000200300 0~00C0~=000020000000508 ("
€S =
op=
pad
=
8 L T e e L
~ ~0OONCOSOCINTOOCNNASNA=SIOI~0SSO0D0O6330|E
™]
)
u —
Q - - > e - P ST D EE L WD S D G N WD Wm em R S R — R R en - - = G - - -
5 CCOO=NCC=ATLENANLE =TNBOSCNEON=CO~S0SSSON
& @
-
]
™ e S S A G G WS WD G G W S G S T Gun M IR SN R S IR S G D GER S A G S e - - ww e wm wn|
— COSCO=COO=CoNP=COCNNA=SCOSCOSSSOsSOCSso|S
™ =
7]
— : -
- B L T
- COPP =00 C~CNC=C=mCO==mANNCOP=2003200509(2
o o
P=P =Pt === tiNNOO == N=ANRN===D=0003886050|23
B
ooo—-eo-ﬂ-uﬂv-aogaag-e-Neeceeeeeeooeeog
=
Nl o -) =) -—
~ ~ ~ ~ ~ -]
=) o -2) o o -
— - p— — p— (=]
=
3-13
— Sl
L L "ah‘:‘ e ST,

FASNEE

|
]

| g O N D =

oomooommm oo

CONNONOONONDUSINDEISTO ST SN

GO-OGGNNQOGﬂefﬁbst"ﬂh‘:@@‘:?O

-

COCOCTCOOS=OOSCSIOTNET =D N==SNS

-OO-QGGGGO@@Q‘GO--°¢=°¢*—-°-S_|

CO=SOOPCCOOSOI0S==0BCPO=~=0O Q8

=
POCITPOPSOOOSSOOOOOPD=0NNOOSS O™

S

-

OO-NNG@——OO@O—GNOONBNBGNB-—O;

GGOOOQOGOOQ-GOOONQQGGNﬂOON-qﬂ
e

SCOPNCOOOOOCOSCOSS O mmuwmPumPOSIC =

CSORIANNONOEV A =S eV ANESCBSNSNC
NN = maNN- e

Table 3.1.3-2 Project 2 Month vs. Problem Type
272

Nl O 0 s e M
eooocsoeesooe-oa*mv-aoeuau«dg
2
E 3 .--_------_-----—-----—----d. b
°°=h'°eaha@-uﬂ@6¢=°°@@SQGEN‘.‘*' 1
- - - m OO =NECOIS0 = [x 1
[A 13
$
) PONN= == NS BPANSANO S = eSS eNS| D :
¢ N = - (-]
-

} i
5
|
4

1975
Total

R S S B E

AN G A

R L

o AR i

Y < TR
7T T TIPS S —

e S e = -

ol R R R Bl =l i i Kl R R 2 1 B

NE= =SSR ETTTESSdD>s eSS 7
- - - =

20

]
o

- e . - e En n wr W En e e en - - —— - W - - -

—

S e e 0 eSS =SS =S O mmemENNSSNTT®t==C2
- - -

X

L i I ettt L

IS SNAUASC OSSOSO S ==NN ==t OENOS

a2

SSSOOSTCOSTO=C ¢ ==RNTSTSASONSST

191

eev--eel-c-ev-:vh-:oae«ccz-@nr-ncg
& - & - e
- - wmm den G A G ——— ——— T —— . ——— — ————— —] —

COSSSS=CISOSTSSISONANCT =Dt =NN=

30

79—4‘!395&65‘9?3@5@@36:‘*0@5:\!&@9

Table 3.1.3-2 Project 2 (Continued)
144

PO OCO=OOISCS = =NAOLSANNTSO

27

66593106‘16—06—--—5![*-G°r-5=0§§h-ﬂ°

148

SEPHGASA Y el

SCSCTOSC=0=NSS=AUDLEODMNS O =mt=m==C

46

- - e - - ——— e - w——— = e o e ——

>DE r—
< 3 3
& "D

Jan
Total

5l = - ll.ll..‘wx 25d
. s > YR TR TN 7 e - AR
b T A NI sy "
i
1 06%% "1 O |22 1 vel 12 | 92 1 201 (7] 1oy 101
3 bl) 10 1o 1o) 1o) i o i
M to (Y]) 10 10 10 10 1o ()] vi6l
3 (" 10 10 10 (X) () I o () |
m I uoe 10 I e 1 91 (Xt 1 6 " | 68 (I |
“ I 699 1o 19 12 (I (| 1 2¢ I 91 (K5 ' €461
i I 109 10 (] (Y () (| t o (] (2 \
A 1 v6t1 1 0 (T 1 02 19 19 129 (T (I | 1
1 186 1o () I b 1 1 6 | ob 1 16 |
1 T09 10 (T T 19 16 1 2! ()) ¥l [
O
1
I Y RSN, (IS S | WA B R (S TR~ SR T | (SN [T | JOS AL ISR T R | ™
1 109 1o | ©© (Y | T H 19 (I TH 1 Uye I 8 (| 1 $09 | 282 1 096 I <P)y Wiol
1 1o) () () () 1o 1o 1o 1o 1o 1o 1o 1
1o 1o 1o) 1o 1o) o I o) o) o 1o 1o ' 0 y bLEL
(1) 1o () 10) 1o () 1) (0 |1 @ 1o 1o 0 1
I 69 () 1o 112 () () N | 1S () 1 69 (KL 1 02 W |
(A)) 1 29 11 | ¥ 121 (Y 1o | T8 | e Y] o1 1
(D) (1)) 1 02 10 (] (] (K [| 0% (| U291 (X" I g6l
1 681 1o I # I 9% (- 01 1 66 11 1o 18I 218 1 88T 1 6l |
1 611 t e [{ oa e i g i 69 121 10 i 1% i 091 i 691 1 G2 [
1 €9 () |8 " Ig (s 1o | av | 03 () I 26 126 1 0C) 1 96 |
(R (s [s (sl AN I [J | [RER S 1P e (HES I, S TR PR TR T AR R |
adA| wa|qoad °SA yjuol | 393f0oad g-g°|°¢ alqel
|

Project 5 Month vs. Problem Type

Table 3.1.3-4

F

SO TAITNDdroEn
CEREUN ===

et all=NeDN -

- - - IR

PN PINT == D
-

- D . w» - - - - . wn -

D=0 == CS

N - - - . -

NMINTIDIPTNN =S D

N=SI3NIN =T ~=-

JAN
FEB

1975

180 | J10 |

| 176 |

29

30

19 1 123

454 | 347 14

993

170

TOTAL

TOTAL

YA

B % i e

g
=SS =SSP
PIVSSHPSLFOAINID
h-@hf’aﬂﬁﬂ.‘lﬂg

- - - D wn - - - - -

SSOI9III999Se

SOOI OSSSS

P99 999se

SeESN =SS
-= 3

=‘ac=-:-sc-e.~u:el-e

e - - - - - - - - - - -

==t PO =N -

B =N =
=-MOE =N ==l =

ESSNNLSTSS =

grasessscea-a
- e

0

o

796) 92) 236 26 102 246 | 457 |

820)

1z

TOTAL

|
i
!
:

Table 3.1.3-5 Project 4 Month vs. Problem Type

(4

e - e e e - - - - - - - - - - - - - - D = - - - - D D - - - S wn - -

93-0"‘&;@*06& SIS NS =S e =N NN el PANTNOISNN= DS

-] - -

oeneva:aan:-enes:ua:a-e-euca--vcv-e-ese:caﬂao-eheoce
NES =N PPNt =- - M= -] - - *

BONdEC O =NNICENNINU TN PSS 3 30T =P0TI0TIINSCI99I939=99

SPNSVNINI == IN =N NN=PIIPNISOI =399 =D ICIIIITI=9399339

DI IIDTITTIIISITTTOTISITIINITIINITOCIIDVIIITIVIOIV993S

- - - > = - " D D D - S = P - D W A W = A S w w- w -

QOQP-GN‘!Q‘!"N&OS‘!-AH': = QPN =R IN =2 VP m=N PO eI I3N=2D9D
NP PPN =mm Yyt TN- AN

- - - —— — —— - - > =D = > . - =" = - W n - = wn W D . =D W - = - > - -

OO I N e = m B a Pt PN =B PR =R A NIN=NNNOISANNNINN -

VeV e =qINIRINCEN - - =

D - - . - - - ——— - wn - = - D - > D - D S -y - W A = = = -

QORI NN N LTINS NETN=aNINEI=PAURNONINSITSCSN e mwaaePdtalD
NO =S P PO PN N et T mlleme N ww - N -y (] -

- - . - - . - —— - - - - - - - - - . S D D A D D - D R D WD WS WD = WD D D D D D - =D wn - -

$9IIP =S eeacae:a:cssecaaaeceeaeseccovsseeoeaaocaoe

- - - > - - . - > - " - " WD . W D - W S W s e W En WS s W wn W w w» w— -
SO SN CE P =N P adtaC =NEhAd PN CTRINNNOIN=ANOSIASSNTBINT=S
BEANNSNMNPE LN P == - - - - - - - -

-—— - — - —————— ————————————————— ——————————— ——— ——— —————

002}--&-- ‘-a-rq-e.-:ae—e-x-:eaa L=V =S =Q=I WIS ANS =

N=NA - - -

- - - - - - - - - - - - - - D - - ——— - - D - - - - . - -

= OO NN QeI AT O PN =S =P =TI BIANIT —(‘IG\GIO-.
g'O--?:ﬂﬁ:-‘ld\@@:ﬂf‘.‘l‘.‘l".‘l—.‘.‘ﬂ- mm = ewomoe - -bi" >
&) = - - - -

e e e

1970
1971

SRS

Table 3.1.3-5 Project 4 (Continued)

v

- — . - ————— - - - ——— o —— ————— — — —— - — = - - M - —— = — ————

- - ————— e —— . ——— o ———— — — —— e ————— o ——— — ——— — —————

- - —— - —— . - —— —— ——— e — ————— —— e — e - — - - - —— —— e — ————

——— = ——— e - —— - — ——— . - - —— — o ——— - - - mn — e M - - . - ————

- - — = - ——— — — — — —— —— — — —— — —— — e —— - - — ———— - - e - - - e —— ——

e —— - ——— - - ———— =D . — — - - —— - — e ——— . - —— — ————— —— —————

(X 7“28[2234649645890&93I.O.lO-OI.4.[069657086008‘939[30
TOONTOALTANN~ON—-N - e e -
PO TANT—NONMMTNIONNTMEN=SOINANNOANNSANNNODO =~ =~ =~ PP =O®OPO~OLTD
DN =l =N~
OOV ONNOTADUNOOINONSONNC~ V=P OO ONNDOANAENN—=ON == ~CD
= BANN=NNLTOHANOO =~ N= = - 2] = =
—
s— 0 s_ o n_ o d.l
-..N O O ~ ~
o o ()] (=4} o
— — — ~— =

11728

2128 |

280 727 57 66

as1

3-19

|

-l

p 39304

G 303044

Z 193loug

L 393f0ug

£ 399044

ol

nef=

ot

ov]-

(1]]
(174
(L}
(117

o
(174
(1]}

-

oty -

(174

o -
ov]-

oy
0y
oc|-

0y

A\

NA\N &

1-2°€ 34nb6L4

303fouaq Aq uoiInqru3siq wa [qoad

SSSX

S

RATVER 1)
1 | ¢ I

]

E)

A

//,)

wvlwﬁ

T SSSE T N T

N

SAANN S

Ssse

N
)

AN\

AN\

\\\

[S == 3

XTI

B 11

N

. poaoxow

3

N\

ANAN

J

KXY

—

7 -

,E
-joe
-{oC
0¥

X

V

A\

1oy

7 977

AN

N

7

S\

(]

-jou
-J0¢

(1}

“J ot

0e
(1]
ov

ol
W
13
(117

-fo

(14
(11}
oy

29VIN3Jd3¢

3-20

NP r—

The other projects generally did not record hardware problems using the same
recording methods used for software problems.

This distribution of problems by the type of software module (Figure 3.2-2,
3.2-3) shows great consistency within a project. The difference in problem
distribution between control modules and I/0 modules within the same

project is considerably less than between the two sets of control modules

in different projects. The great similarity of problem distributions

for different types of modules can be accounted for by either (a) modules of
different functional type are more greatly affected by the type of project
than by their function or (b) the methods used to record and classify problem
reports vary more between the projects than the variance caused by module
function.

3.3 TIME-TO-FIX

A major software parameter that has not been given sufficient attention is the
time necessary to fix a software problem. As mentioned in section 2.3 the
only data available on the time required to correct a software problem is the
number of days that a software problem report was open. This is the measure
. that was used in the_ followipg analysijs. i s
The limitations of this measure, however, are obvious. In addition to delays
in making up the physical report, there can be delays in allocation of
resource. Although the best measure of the difficulty of correction is man-
hours spent with problems of equal criticality, a statistical relationship may
be assumed between the number of days a problem report remains open and the
number of personhours needed to correct it.

i

3.3.1 EFFECT OF MODULE TYPE
In general the type of module has relatively little effect on the length of
time a problem is open. Table 3.3.1-1 shows that the time a problem is open

is relatively consistent except for the category "other" for Project 1.

3-21

W 2-2°¢ 3unby4
. adA) anpoy Aq sSwd|qouad SO uoLINGLAISIQ
_ € 3%3fouy
|
.m ovil JdAL HOUYl
P T B AR GERE R R e e e T S SO SR NNE FRC SN BT R RS
SONANY AN AR S BRI N N
,m ST T INTITI T INN &
. QININ ST (N L [DR | S I HEE] 1 1 ; : I
& SUETE (IS SRR SR S S TR S S V/ L 13 + F 3 #5911 1 di
N (111 S b K * + + ﬁ } : ; L oy
o~ | Py 1 - +///,. ,% e M L % A\ e I
INM 0zl I 4 1 / 1 1 i 8 1 /ﬁ 1 i 8 1 1 i 4 i ._H % ; o2
-IIVNW 0g |- g 4 + 5 4 5 4 + V g 1 ¥ E i. 4 1 & —Ho¢
viva ovl- f 4+ 4 L + - Ar g L i 8 L X i -{ov
i SSSY T FST OSSN XXX \\ e
nt 1T ¥ i ; i i 3 %// I 1 W /ﬂ// 01 ”.u
CTTRTC2 Y I N [N A N I R] f bl i
oel- - | + : - ; - : : 1o~
oy 1 S L 1 oy m
oy Ex 2 NN g e N \
gz—mww :— - - 4 4 4 - ﬁ % 7\ ﬁ -4 1 % .// ——- m
-J04d ¢ - i i R [| / ; - 1 oz ™
1S04/Md e)- } A : 1 i W// 3 } { 1 ; ‘_ Jdor
wl- + } 1 1 . : T - 1 ov R
G \ G S \\\ W AN e
JT TN T TN BN N “
0e}- . ! : / -] ¢ : 1 02 _
o/1 m |- S e \ 7 { -] {1 ¢ S |
o] |} 1 1 1 % £ 2 1 ! {ov |
= 1 4 — |
nf- //ﬁ 1 T - ,A i, ik / /V -lm
ol 5 " / s : 3 e 4 4 E / 3 -102
041N0D N
ocl- : | Lﬁ ; ; - A i + 1 1 H] ot
oy A 1A . " . 4 i 4 1 L | -{oy
A n] S L} b d N] 1 1 r I " 9 k]] 0 J L v |
{
|
A
‘ —
P —

|
]
|

€-2°¢ a4nbLy

9dA] a|hpoW Aq swa|qoad ...vo uoLangralsta
L 393foud

ovLl 3dAL dOWY3
TSR P (G VU | S T PR [S TR S (RN TR S S R | -

a 8
SXY NN N ANN\N NN N S\
i N\

L 1
aInw ¢ 0z
o + 4+ + + + T Tt L RS O e R
e SN T SRR e G M e e R U 1 1+ 1 $ o

N XXX N \AN N AN AN N
AT T TN 77T RN

(YA + + + + H 4+ + + + + 4+ 4
o + 1+ T+ *

PRIV

it

e s

-

ALITLLN

(OS §
4=
"
T
"
T
+
T
.
y
"
T
ks
(=]
o~

ovk + - - + + + + + + + + + + + + + + + + + oy

) GERe e E E a R V/H// oL ¢

(1 VA 1+ + “+ + T + + + + + + + + + + + + + 47 - J 02 o
T e R R R S S R (e SR R R S U (S TR R SR N SR o S DY

(e SR e Sl TN SRR R i R R e SR RSB SR N SR GO R A TR |

AN e QRN // ANNAY AN\
of- : oL

amwwww Gel LRk R kbl SR L S e T e e e e R e T oz
:o._\us_cm . 0t

7

7/

B

| v
39VININI3d

Table 3.3.1-1 Time-to-Fix by Module Type

Days Open
Module Type Project 3 Project 1
E Control 7.1 5.0
:
I/0 9.8 9.0
Pre/Post Processing 8.0 7.0
Algorithm 7.8 7.2
3 Data Management 1.6 :
Qther 9.6 11.7

L s W T —

the average problem remains open from 7 t. 9 days.

3.3.2 EFFECT OF ERROR TYPE
A comparison of the time required to resolve software problems as a function
of problem type is given in Figure 3.3.2-1. It can be seen that the time
required to resolve problems varies considerably with different types of pro-
blems but no clear trend between projects is evident.

B 2 i e i Ko i Lo

This may be due to the problems we have previously discussed concerning the
adequacy of the error typology and the difficulty associated with the
categorization of errors. The lack of trend, the variance, may be due to
the non-uniform assignment of errors both across and within projects.

3.4 CROSS PROJECT VALIDITY

As can be seen from the project comparisons in this section, there is consid-
erable variation between projects. The factors causing this variability be-
tween these projects cannot be determined from the data available in the soft-
ware problem data base. The values for problem rates and error distributions
derived from these projects can best be used as examples of the range of
variability rather than normative values.

The gross rates for the projects are the most consistent values that can be
derived from this study. The distribution of the majority of software pro-
blems into just a few problem categories is also consistent through all
projects.

Tables 3.4-1 through 3.4-3 compile error rate data associated with a project
undertaken at GE/Sunnyvale. This was a large command and control system
consisting of these subsystems - a command assembly subsystem, a data base
management subsystem, and a report generation subsystem. This system has

an operational history which we Fave analyzed. Again there seems to be a
consistency associated with gross error rates. This leads us to suspect that
such aggregate project-level data are the only meaningful figures which can be

P I Rl TR

v VAP

02
(L]
ov

L 133r04d

(174
(117

09
(L1}

¢ 133004d

ol
€ 123008d

(174

ere

adA] wa|qoad Aq x}4-03-3wt] 1-2°€°€ dnbiy

sadfA] wa|qoad

omp-

ﬁ :
a,.aﬂy//%m,/ﬁ%?%%%%ﬁig%%%.@%»i?ﬁ%%%
N NN N | \ _ N
DM SRS SSANON

ol
02
(1]

(117

|14
oy
09
(L)

(sAeq)
X{4=03-aut]

C

| |
|
|
Table 3.4-1
Subsystem 1
NO. OF NO. OF : ERROR RATE
TYPE MODULES LINES OF cope | NO- OF SPR'S | spris/100 LOC
CONTROL 5 500 7 1.4
DATA
HANRGEMENT 13 3840 53 1.4
1/0 10 2060 33 1.6
PRE/POST :
PROCESSING 8 < 1270 6 -3
ALGORITHMIC 1 5520 62 1.1 :
. 5
TOTAL 47 13090 160 1.2 ’;
3-27 | §
B
| &
B b AT S < AR e w— £ RRRLE. v —————— i

2
e e i - SECRRGA Rme—————E

f _
; Table 3.4-2 i
'[Subsystem 2 |
NO. OF NO. OF . ERROR RATE 1
TYPE MODULES LINES OF copE | NO. OF SPR'S| spr's/100 LOC
:
CONTROL 1 490 4 .8 |
DATA
RENRAEIERT 18 7640 97 1.3
1/0 10 3840 41 1.1 ¥
PRE/POST
PROCESSING L L e =
ALGORITHMIC 2 1300 9 .7
TOTAL a1 16980 183 1.1
{ :
il i
o :
3-28 { |

Table 3.4-3
Subsystem 3

NO. OF NO. OF : ERROR RATE
TYPE MODULES LINES OF cope | NO. OF SPR'S| sprts/100 LOC
CONTROL 5 2140 33 1.5
DATA
MANAGEMENT 22 5300 79 1.5
1/0 14 1200 14 1.2
PRE/POST
PROCESSING 8 1900 18 -9
ALGORITHMIC 2 1180 3 3
SYSTEM 0 0 0 0
TOTAL 51 11720 147

ks oty
R I

3-29

3 " > 7y o'l B 0 ol
RIS b B R 3 AL
e i i I o S SRS

derived with the current error typology and data collection methodologies.
Before true normative values for software problems can be derived, more data
must be collected on more factors affecting software development.

|
|
|

4.0 FUTURE CONSIDERATIONS FOR RELIABILITY DATA COLLECTION

There is a great need in software reliability theory for data collected from
actual software developments both to confirm existing models and suggest
additional models. Just as physical models are confirmed by experimental
data, software models must be confirmed by data taken from actual software
developments.

Data collected from small experimental projects cannot illustrate the experi-
ence of actual large scale software projects.

One of the most difficult aspects of major software projects is communication
between the various groups involved in the development. Methods for the coor-

dination of the many diverse activities involved in major software develop-
ments are still being investigated. Only from actual software developments

can these problems be investigated.

Because of the high cost of data collection it is prohibitively expensive to
collect data to test a single hypothesis. Data collection has usually con-
sisted of collecting whatever was thought necessary or possible. As seen from
the comments and analyses of the previous sections this has not always been
adequate.

In the future, attention should be paid to the type of analyses to be per-
formed. It is not sufficient to record only the most easily obtained informa-
tion, if this is insufficient to validate an hypothesis. The information not
collected is often the most tantalizing. Some of the items that should be
collected are given in Table 4.1-1.

Further needs include a better description of how data collection should be
performed. Classification of problems is often a difficult task that could
be made easier by strong criteria for the classification. An additional need
is standard definitions of terminology. Only by using standard terminology
can there be consistent interpretation of the results from different projects.

4-1

Table 4.1.1
Parameters for Data Collection

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

o (1)

System Description

Duration of Each Phase

Management Methods

Design Methods

Coding Methods

Test Methods

Types of Computers Used

Languages Used

General Module Description and Function
Problems for Each Module

Type

Method of Correction

Date of Occurrence

Criticality of Problem

Date of Correction

Difficulty of Correction
Effects of Correction on Other Modules
. Manpower Expended on Correction
Structural Measures of Modules
Module Length

Statement Mix

of Variables

Complexity

S WQ H ® o 0 T o
e ® & &« e & s

4-2

T iedd
Vs
-

R P €

Vs

SR

TeES

L

One last comment on data collection that may now be made with current know-
ledge. One of the major factors influencing the quality of the data collected
is the motivation of the development team to provide the data. A motivating
influence is the usefulness of the data to the development team during the
development (i.e., real-time feedback). Thus it is important to make the
data collection effort beneficial to the developers as well as to the relia-
bility analyst. A vehicle to provide the benefits of the data collection are
the preliminary baselines that have been established through this and other
studies.

4-3 1

REFERENCES

[BAKW77]

[FRIM77]

(LLoD77]

[MCCa77]

[MOTR77]

[MYEG76]

[NELR78]

[RYEP77]

[THAT76]

[WILH77]

[WOLR74]

Baker, W.F., "Software Data Collection and Analysis: A Real Time
System Project History", IBM Corporation, RADC-TR-77-192, June 1977.
(A041644)

Fries, M.J., "Software Error Data Acquisition", Boeing Aerospace
Company, RADC-TR-77-130, April 1977. (A039916)

Lloyd, D., Lipow, M., Reliability: Management, Methods, and
Mathematics, Prentice-Hall Inc., Englewood Cliffs, NJ, 1977.

McCall, J.A., Richards, P.K., Walters, G.F., “Factors in Software
Quality - Concepts and Definitions of Software Quality". General
Electric Company, RADC-TR-77-369, Vol I, November 1977. (A049014)

Motley, R.W., Brooks, W.D., "Statistical Prediction of Programming
Errors", IBM Corporation, RADC-TR-77-175, May 1977. (A041106)

Myers, G., Software Reliability: Principles and Practices,
~ohn Wiley & Sons, NY, 1976.

Nelson, R., "Software Data Collection and Analysis (Draft-Partial
Report)", RADC, September 1978.

Rye, P., et al, "Software Systems Development: A CSDL Project
History", The Charles Stark Draper Laboratory, Inc.
RADC-TR-77-213, June 1977. (A042186)

Thayer, T.A., et al, "Software Reliability Study". TRW Defense !_3;
and Space Systems Group, RADC-TR-76-238, August 1976. (A030798) :

Willman, H.E., Jr., "Software Systems Reliability: A Raytheon

Project History", Raytheon Company, RADC-TR-77-188, June 1977.

(A040992)

Wolverton, R.W., "The Cost of Developing Large-Scale Software", i
IEEE Trans. on Computers, Vol C-23, No. 6, June 1974, pp 615-636.

Appendix A

AID Analysis for Project 1 Structural Data

The Automatic Interaction Dectector Program (AID) is a statistical technique
used to identify interaction between several independent variables and a
dependent variable. The method is based on successive splitting on the
variable which decreases the variance of the dependent variable the most.

The method is explained in [SONJ64]*. The result of the analysis is a tree
of the binary splittings.

The method was applied to the data in the Project 1 data base. The goal was
to achieve a better understanding of the interaction of the various structural
parameters given in this report. These parameters are listed in Table A-1.

The parameters given in Table A-1 are not the ideal parameters to use for
this method of analysis. Ideally the parameters should not have been pre-
viously weighted. For instance the "IF" complexity would be better replaced
by a simple count of the number of "IFs".

The results of the analysis is given in Figure A-1. The first division is on
executable statements. The modules below 700 executable statements have

far fewer problems than those with more than 700 executable statements. The
next division of the modules with less than 700 executable statements is on
the number of data handling statements. Again there is a major difference

between modules with more than 100 data handling statements and those with
fewer.

*See Reference following page A-4.

A-1

A A 1 I R T
SN XY o R

S
T L
T i S

SWa|qoad d4em3jos 404 334) QIY

L-Y @4nbt4

9°Lh = d 0001< SWA1qo4d 40 J43quny 3beasay = d
L=N e S3LNPOK 4O Jaquny = N
ALIX31dW0D 41 o= & :aN3937
€L2=4d
€ =N 0001>
SIOVAYILINI
NOILVO1TddV 0L =0
92 = N
6°22 = d
9L = N
L'El = d -
- 0l <
it <k — SININILYLS 56 =
0l = d -
SIIVIUIINI NOILVII1ddV S) 001< b s 602 = N
68 =
- ONIIONVH V1va €8l = N
>
2y = d 0oL
pil = N
. " - R R— R -

A-2

Table A-1
Aid Parameters

(1) Total Routine Statement
; (2) Loop Complexity, which is defined as:
Zm1 Wy where

wi =4i-1 3
4Q . so that

——

wi =1 and
1 =1

m{ = number of loops in routine at indentation or
nesting level i

wi = weighting factor
Q = maximum level of indentation in the system
4 = shaping value

(3) IF complexity, which is defined as:

z“'l Wi

where
ni = number of IFs in routine at indentation or

nesting level i

wi = weighting factor (the same as for lobp
complexity)

—
g o

(4) Total Routine Branches

(B

(5) Logical Statements (IF, ORIF, IFEITH)

R ik Batas

ﬂi-".«._.. s 0

Table A-1
Aid Parameters (Continued)

(6)
(7)

(8)

(9)
(10)
8
(12)
(13)

(14)

Direct routine interfaces with other applications routines
(not a count of calls to other routines).

Direct routine interfaces with operating system or system
support routines (not a count of calls to system routines.

Routine input/output statements
Routine computational statements
Routine data handling statements
Routine nonexecutable statements
Routine executable statements

Total interfaces with other routines

Total routine comments

A-4

el bt <

APPENDIX REFERENCE

[SONJ64] Sonquist, J.C., Morgan, J.N., the Detection of Interaction
Effects, Monograph No. 35, Survey Research Center Institute
for Social Research, The University of Michigan, 1964.

